Math 10B with Professor Stankova
Quiz 5; Tuesday, 2/26/2019
Section \#206; Time: 9:30 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. TRUE False If $A \subset B$, then $P(B \mid A)=1$ (assuming all quantities are well defined).

Solution: Writing the formula, we get $P(A \cap B)=P(A)$.
2. True FALSE If $P(A), P(B) \neq 0$, then $P(A \mid B)=P(B \mid A)$.

Solution: See the quiz problem for a counter-example.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) Suppose a new cancer test has a 90% chance of correctly identifying that a sick patient has cancer and a 10% chance of incorrectly identifying that a healthy patient has cancer. Assume that 20% of the population has this form of cancer.
(a) (2 points) Let A be the event that a random person has cancer and B being the event that a person tests positive for cancer. Write the probabilities you are given in terms of A and B.

Solution: Then we are told that $P(B \mid A)=\frac{9}{10}, P(B \mid \bar{A})=\frac{1}{10}, P(A)=\frac{1}{5}$.
(b) (3 points) What is the probability that the test says a random person has cancer?

Solution: We are asked to calculate $P(B)$ and we get

$$
\begin{aligned}
P(B) & =P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A}) \\
& =\frac{9}{10} \frac{1}{5}+\frac{1}{10} \frac{4}{5}=\frac{13}{50} .
\end{aligned}
$$

(c) (5 points) What is the probability that a person who tests positive has cancer?

Solution: We are asking for $P(A \mid B)$ and we use Bayes theorem to get

$$
\begin{aligned}
P(A \mid B) & =\frac{P(B \mid A) P(A)}{P(B)} \\
& =\frac{\frac{9}{10} \frac{1}{5}}{\frac{13}{50}}=\frac{9}{13}
\end{aligned}
$$

